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Abstract

The problem of flow and heat transfer of an incompressible homogeneous second grade fluid over a non-isothermal stretching sheet in
the presence of non-uniform internal heat generation/absorption is investigated. The governing partial differential equations are con-
verted into ordinary differential equations by a similarity transformation. The effects of viscous dissipation, work due to deformation,
internal heat generation/absorption and thermal radiation are considered in the energy equation and the variations of dimensionless sur-
face temperature as well as the heat transfer characteristics with various values of non-dimensional viscoelastic parameter k1, Prandtl
number r, Eckert number EcðE0cÞ, radiation parameter NR, and the coefficients of space-dependent (A*) and temperature-dependent
(B*) internal heat generation/absorption are graphed and tabulated. Two cases are studied, namely, (i) the sheet with prescribed surface
temperature (PST case) and (ii) the sheet with prescribed heat flux (PHF case).
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Boundary layer behaviour over a moving continuous
solid surface is an important type of flow occurring in a
number of engineering processes. To be more specific,
heat-treated materials travelling between a feed roll and a
wind-up roll, aerodynamic extrusion of plastic sheets, glass
fiber and paper production, cooling of an infinite metallic
plate in a cooling path, manufacturing of polymeric sheets
are examples for practical applications of continuous mov-
ing flat surfaces. Since the pioneering work of Sakiadis [1],
various aspects of the problem have been investigated by
many authors. Mass transfer’s analyses at the stretched
sheet were enclosed in their studies by Erickson et al. [2]
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and relevant experimental results were reported by Tsou
et al. [3] regarding several aspects for the flow and heat
transfer boundary layer problems in a continuously
moving sheet. Crane [4] and Gupta and Gupta [5] have
analyzed the stretching problem with constant surface
temperature while Soundalgekar [6] investigated the Stokes
problem for a viscoelastic fluid. This flow was examined by
Siddappa and Khapate [7] for a special class of non-
Newtonian fluids known as second-order fluids which are
viscoelastic in nature.

Rajagopal et al. [8] independently examined the same
flow as in Ref. [7] and obtained similarity solutions of the
boundary layer equations numerically for the case of small
viscoelastic parameter k1. It is shown that skin-friction
decreases with increase in k1. Dandapat and Gupta [9]
examined the same problem with heat transfer. In Ref.
[9], an exact analytical solution of the non-linear equation
governing this self-similar flow which is consistent with the
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Nomenclature

A, D prescribed constants
A0 constant (Eqs. (23) and (29))
A* space-dependent internal heat generation/

absorption
B* temperature-dependent internal heat genera-

tion/absorption
c stretching rate
cP specific heat at constant pressure
Ec Eckert number for the PST case
E0c scaled Eckert number for the PHF case
f dimensionless stream function
g dimensionless temperature for the PHF case
k thermal conductivity
k1 viscoelastic parameter
k0 parameter related to NR

k* mean absorption coefficient
l characteristic length
NR radiation parameter
qr radiative heat flux
q000 rate of internal heat generation or absorption
r parameter related to k1 (Eq. (13))
T fluid temperature

u, v velocity components along x and y directions,
respectively

x, y Cartesian coordinates along the plate and nor-
mal to it, respectively

Greek symbols

a thermal diffusivity
a1, a2 normal stress moduli
g dimensionless similarity variable
h dimensionless temperature for the PST case
l dynamic viscosity
t kinematic viscosity
q density
r Prandtl number
r* Stefan–Boltzmann constant

Subscripts

w, 1 conditions at the surface and in the free stream,
respectively

Superscript

(
0
) derivative with respect to g
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numerical results in Ref. [8] is given and the solutions for
the temperature for various values of k1 are presented.
Later, Cortell [10] extended the work of Dandapat and
Gupta [9] to study the heat transfer in an incompressible
second-order fluid caused by a stretching sheet with a view
to examining the influence of the viscoelastic parameter on
that flow. It is found that temperature distribution depends
on k1, in accordance with the results in Ref. [9].

In the case of fluids of differential type (see Ref. [11]), the
equations of motion are in general one order higher than
the Navier–Stokes equations and, in general, need addi-
tional boundary conditions to determine the solution com-
pletely. These important issues were studied in detail by
Rajagopal [11,12] and Rajagopal and Gupta [13].

The effects of heat generation/absorption become
important in view of various physical problems (see Vaj-
ravelu and Hadjinicolaou [14]) and those effects have been
assumed to be constant, space-dependent or temperature-
dependent (Vajravelu and Hadjinicolaou [15]). Even, very
recently, the mixed convection boundary layer flow of a
Newtonian, electrically conducting fluid over an inclined
continuously stretching sheet with power–law temperature
variation in the presence of magnetic field, internal heat
generation/absorption and wall suction/injection is ana-
lyzed by Abo-Eldahab and El Aziz [16]. In the present
research, we extend the problem investigated in Ref. [16]
to viscoelastic fluid flows.

Furthermore, Char [17] studied MHD flow of a visco-
elastic fluid over a stretching sheet, however, only the ther-
mal diffusion is considered in the energy equation; later,
Sarma and Rao [18], Vajravelu and Roper [19] and Cortell
[20,21] analyzed the effects of work due to deformation in
such an equation. Another effect which bears great impor-
tance on heat transfer is the viscous dissipation. The deter-
mination of the temperature distribution when the internal
friction is not negligible is of utmost significance in different
industrial fields, such as chemical and food processing, oil
exploitation and bio-engineering. Consequently, the effects
of viscous dissipation are also included in the energy
equation.

On the other hand, the effect of radiation on viscoelastic
boundary-layer flow and heat transfer problems can be
quite significant at high operating temperature. In view of
this, viscoelastic flow and heat transfer over a flat plate
with constant suction, thermal radiation and without vis-
cous dissipation were studied by Raptis and Perdikis [22].
Viscous dissipation and radiation were considered by Rap-
tis [23] and the effect of radiation was also included in Ref.
[24] and in Ref. [25]. Very recently, researches in these fields
have been conducted by many investigators [26–30]; how-
ever, the effects of work due to deformation on viscoelastic
flows and heat transfer in the presence of radiation, viscous
dissipation and non-uniform heat source/sink have not
been studied in recent years.

In the present paper a proper sign for the normal stress
modulus (i.e., a1 P 0) is used and, as we will see in Section
3, the effects of viscous dissipation, work due to deforma-
tion, internal heat generation/absorption and thermal radi-
ation are included in the energy equation. This last effect
has been enclosed in this study by employing the Rosseland
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approximation [31]. Furthermore, we augment the bound-
ary conditions to the flow problem and then, momentum
and heat transfer in an incompressible and thermodynam-
ically compatible second order fluid, which is termed as
second grade fluid (see Ref. [20]), past a stretching sheet,
are analyzed.

This paper runs as follows. In Section 2, we shall con-
sider the mathematical analysis of the flow and some exact
solutions of the boundary layer second grade fluid flow
over a linearly stretching continuous surface; in Section 3
we shall examine the thermal problem when all the effects
cited above are included in the energy equation for two
cases of boundary heating: (a) prescribed surface tempera-
ture (PST case) and (b) prescribed heat flux (PHF case);
furthermore, similar solutions are obtained for both stream
function and temperature and the influence on the numer-
ical results of those additional effects above-mentioned will
also be discussed.
2. Flow analysis

An incompressible homogeneous fluid of second order
has a constitutive equation given by [32]:

T ¼ �pIþ lA1 þ a1A2 þ a2A2
1: ð1Þ

Here T is the stress tensor, p the pressure, l the coefficient
of viscosity, a1, a2 are the normal stress moduli and A1 and
A2 are defined as

A1 ¼ ðgrad vÞ þ ðgrad vÞT; ð2Þ
A2 ¼ d=dtA1 þ A1 � grad vþ ðgrad vÞT � A1: ð3Þ

Here v denotes the velocity field and d/dt is the material
time derivative. Some assumptions concerning the sign of
a1 in the model (1) will be necessary. For thermodynamic
reasons (see Ref. [33]), the material parameter a1 must be
positive. If the fluid of second order modelled by Eq. (1)
is to be compatible with thermodynamics and is to satisfy
the Clausius–Duhem inequality for all motions and the
assumption that the specific Helmholtz free energy of the
fluid is a minimum when it is locally at rest, then

l P 0; a1 P 0; a1 þ a2 ¼ 0:

The constitutive equation given by Eq. (1) is capable of
modelling a non-Newtonian fluid which possesses visco-
elastic (l > 0; a1 > 0) properties. In our analysis we assume
that the fluid is thermodynamically compatible (a1 P 0);
we consider the flow of an incompressible second grade
fluid past a flat and impermeable sheet coinciding with
the plane y = 0, the flow being confined to y > 0. Two
equal and opposite forces are applied along the x-axis so
that the wall is stretched keeping the origin fixed. The stea-
dy two-dimensional boundary layer equations for this
fluid, in the usual notation, are:

ou
ox
þ ov

oy
¼ 0; ð4Þ
u
ou
ox
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oy
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oy3

� �
;

ð5Þ
where u and v are the velocity components in x and y direc-
tions, respectively, t is the kinematic viscosity and q is the
density. The boundary conditions to the problem are:

uwðxÞ ¼ cx; v ¼ 0 at y ¼ 0; c > 0; ð6Þ

u! 0;
ou
oy
! 0 as y !1: ð7Þ

The second condition (7) is the augmented condition
since the flow is in an unbounded domain, which has been
discussed by Garg and Rajagopal [34].

Defining new variables

u ¼ cxf 0ðgÞ; v ¼ �ðc � mÞ1=2f ðgÞ; ð8Þ

where

g ¼ c
m

� �1=2

y; ð9Þ

and substituting into Eq. (5) give

ðf 0Þ2 � ff 00 ¼ f 000 þ k1½2f 0f 000 � ðf 00Þ2 � ff iv�; ð10Þ
where k1 ¼ a1c=qm is the viscoelastic parameter and a prime
denotes differentiation with respect to g. The boundary
conditions (6) and (7) become

f ¼ 0; f 0 ¼ 1 at g ¼ 0;

f 0 ! 0; f 00 ! 0 as g!1: ð11Þ

It is interesting to note that the problem {(10) and (11)} has
a solution of the form

f ðgÞ ¼ ð1=rÞ � ð1� expð�rgÞÞ; ð12Þ
where

r ¼ ð1þ k1Þ�1=2
: ð13Þ

This gives the velocity components

u ¼ cx expð�rgÞ;

v ¼ �ðcmÞ1=2 1� expð�rgÞ
r

:
ð14Þ

For a purely viscous fluid (i.e., k1 = 0), Eq. (10) becomes
f 000 þ ff 00 � ðf 0Þ2 ¼ 0 which is satisfied by Eq. (12) with
k1 = 0 (i.e., r = 1) which is in agreement with the steady
state flow’s solution for a purely viscous fluid. So, for a
slightly viscoelastic fluid (small k1) we obtain from Eqs.
(12) and (13) a boundary layer only slightly altered in its
dimensions from the viscous one; therefore, Eqs. (12) and
(13) represent a realistic solution for the flow treated here,
but, in several industrially important processes, we can of-
ten encounter fast flows of highly viscoelastic fluids such as
polymer melts like high-viscosity silicone oils. These real
flows must be simulated in order to have some idea of
how heat transfer depends on several effects which are con-
sidered in this research.
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Thus, we get a simple exact analytical solution and
we use in heat transfer analysis this solution for the func-
tion f.

3. Heat transfer analyses

By using usual boundary layer approximations, the
equation of the energy for temperature T in the presence
of radiation, with temperature dependent heat source/sink
in the flow region, viscous dissipation and taking into
account the work due to deformation is given by

u
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; ð15Þ

where a is the thermal diffusivity, cP is the specific heat of a
fluid at constant pressure, qr is the radiative heat flux and
q000 is the rate of internal heat generation (>0) or absorption
(<0) coefficient. The second and fifth terms that appear on
the right-hand side of Eq. (15) pertain to the effects of
viscous dissipation and elastic deformation, respectively.

Using the Rosseland approximation for radiation [31],
the radiative heat flux is simplified as

qr ¼ �
4r�

3k�
oT 4

oy
; ð16Þ

where r* and k* are the Stefan–Boltzmann constant and
the mean absorption coefficient, respectively. We assume
that the temperature differences within the flow such as that
the term T4 may be expressed as a linear function of tem-
perature. Hence, expanding T4 in a Taylor series about
T1 and neglecting higher-order terms we get

T 4 ffi 4T 3
1T � 3T 4

1: ð17Þ

In view of Eqs. (16) and (17), Eq. (15) reduces to
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From the above equation it is seen that the effect of radia-
tion is to enhance the thermal diffusivity. The term q000 is
modelled as:

q000 ¼ kuwðxÞ
xt

A�ðT w � T1Þf 0ðgÞ þ B�ðT � T1Þð Þ; ð19Þ

where Tw is the temperature at the wall, T1 is the fluid
temperature far away from the surface, k is the thermal
conductivity and A* and B* are the parameters of space-
dependent and temperature-dependent internal heat gener-
ation (i.e., A* > 0 and B* > 0)/absorption (i.e., A* < 0 and
B* < 0), respectively. Two kinds of thermal boundary
condition at the wall are considered and they are treated
separately in the following sections.
3.1. Prescribed surface temperature (PST case)

In this circumstance, the boundary conditions are

T ¼ T wð¼ T1 þ A � x
l

� �2

Þ at y ¼ 0;

T ! T1 as y !1;
ð20Þ

where the constant l is chosen as a characteristic length.
On the other hand, we define the non-dimensional tem-

perature h(g) as:

hðgÞ ¼ T � T1
T w � T1

: ð21Þ

Realize that in order to obtain similarity solutions for tem-
perature h(g) we consider stretched boundary surface with
prescribed power law temperature of second grade only
(see Ref. [17]).

Using Eqs. (8), (9), (19), (20) and (21) we find from (18)

h00 � 3rNR

3N R þ 4
ð2f 0h� f h0Þ þ 3NR

3NR þ 4
ðA�f 0 þ B�hÞ

¼ � 3rNR

3NR þ 4
Ec½ðf 00Þ2 þ k1f 00ðf 0f 00 � ff 000Þ�: ð22Þ

Here, r ¼ t
a is the Prandtl number, Ec ¼ c2l2

AcP
is the Eckert

number and NR ¼ kk�

4r�T 3
1

is the radiation parameter.

In view of Eq. (12), Eq. (22) reduces to

h00 � rk0 2h expð�rgÞ � 1� expð�rgÞ
r

h0
� �

þ k0ðA� expð�rgÞ þ B�hÞ
¼ �rk0EcA0r2 expð�2rgÞ; ð23Þ

where k0 ¼ 3NR

3NRþ4
; k0 ¼ 1 with and without thermal radia-

tion, respectively and A0 ¼ 1þ k1.
It is clear from the above equation that the effect of the

work due to deformation is to enhance the dissipative term.
Eq. (23) also governs a set of particular problems. For
example, with A* 6¼ 0 and B* 6¼ 0, we can consider only
one of the following three effects, dissipative heat (i.e.,
k0 = 1; A0 = 1); elastic deformation (i.e., k0 = 1; A0 = k1)
or thermal radiation (i.e., k0 ¼ 3NR

3NRþ4
; A0 ¼ 0).

The boundary conditions (20) become

hð0Þ ¼ 1; hð1Þ ! 0: ð24Þ

Taking into account the thermal radiation, we can express
the surface heat flux as:

qw ¼ �k
oT
oy

� �
w

þ ðqrÞw ¼ �
k
k0

A
c
t

� �1=2 x
l

� �2

h0ð0Þ: ð25Þ

Using numerical methods of integration and disregard-
ing temporarily the second condition (24), a family of solu-
tions of (23) can be obtained for arbitrarily chosen values
of dh

dg

� �
g¼0
¼ h0ð0Þ 6 0. Tentatively we assume that a special

value of jh0ð0Þj yields a solution for which h vanishes at a
certain g ¼ g1 and satisfies the additional condition
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dh
dg
¼ 0; h ¼ 0 at g ¼ g1: ð26Þ

We guess h0(0) and integrate Eq. (23) together with first
condition (24) as an initial value problem by the Runge–
Kutta method of fourth order with the additional condi-
tion (26). We follow an iterative procedure which is
stopped to give the temperature profiles when (26) is
reached. In the present analysis the equivalent step size
Dg = 0.02 is used to obtain the numerical solution. It is
worth mentioning that, for each numerical solution, the
g1 value depends on the non-dimensional parameters
which govern energy and momentum boundary layer prob-
lems. As we will see, this paper highlights the effects of elas-
tic deformation and frictional heating on temperature
distributions taking into account the presence of a non-uni-
form heat source and thermal radiation.

3.2. Prescribed heat flux (PHF case)

In this case, the power–law heat flux on the wall is con-
sidered in the form
Fig. 1a. Temperature profiles in PST case for two values of k1 w

Fig. 1b. Temperature profiles in PHF case for two values of k1 with
at y ¼ 0 : qw ¼ �k
oT
oy

� �
w

¼ D
x
l

� �2

;

as y !1 : T ! T1: ð27Þ

where D is a constant.
On the other hand, we define a non-dimensional temper-

ature g(g) as

gðgÞ ¼ T � T1
D
k

x
l

� 	2 t
c

� 	1=2
: ð28Þ

Using Eqs. (12), (19) and (28), we find from the energy
equation (18):

g00 � rk0 2g expð�rgÞ � 1� expð�rgÞ
r

g0
� �

þ k0ðA�gð0Þ expð�rgÞ þ B�gÞ
¼ �rk0E0cA0r2 expð�2rgÞ: ð29Þ

where k0 ¼ 3NR

3NRþ4
; k0 ¼ 1 with and without thermal radia-

tion, respectively and E0c ¼ EcAk
D

c
t

� 	1=2
is the scaled Eckert

number.
ith (solid line) and without (broken line) thermal radiation.

(solid line) and without (broken line) work due to deformation.
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The boundary conditions can be obtained from Eqs.
(27) and (28) as

g0ð0Þ ¼ �1; gð1Þ ¼ 0 ð30Þ

and in view of Eq. (28), we get

T w ¼ T1 þ
D
k

x
l

� �2 t
c

� �1=2

gð0Þ: ð31Þ

Temperature profiles with and without different effects in
the PST/PHF cases are depicted in Figs. 1–6 for several
values of the parameters EcðE0cÞ, k1, NR, r, A* and B*.
The effect of increasing k1 is shown in Figs. 1a and 1b
for both PST and PHF cases. It is clear from these Figures
that as k1 increases, a slight decrease in temperature occurs.
Fig. 1a elucidates the influence of the thermal radiation’s
effect on temperature distribution for PST case, whereas
Fig. 1b (PHF case) depicts the variation of temperature
profiles for two values of k1 when the elastic deformation’s
effect is present or it is absent. As we can see in Fig. 1b,
such an effect becomes more important when k1 is high.
Fig. 2a. Temperature profiles in PST case for two values of Ec with (solid

Fig. 2b. Temperature profiles in PHF case for two values of E0c with
Figs. 2a and 2b depict the effect of varying EcðE0cÞ for
NR = 1; r = 3; A* = 0.2; B* = 0.2 and k1 = 0.1. The results
show marked increase in the temperature distributions with
increase in EcðE0cÞ for both PST and PHF cases. As we can
see, internal heat generation and work done by deforma-
tion yield an augment in the fluid’s temperature and these
effects increase with increase in EcðE0cÞ.

Figs. 3a and 3b depict the effect of varying NR for r = 3;
A* = 0.2; B* = 0.2; k1 = 0.1 and EcðE0cÞ ¼ 0:1. In general,
the results show marked decrease in the temperature distri-
butions with increase in NR for both PST/PHF cases. It is
obvious that dissipative heat and, again, the work due to
deformation yield an augment in the fluid’s temperature.
Realize that the effect of fluid’s elasticity becomes more
important when NR is low (see Fig. 3b).

The effect of increasing r is shown in Figs. 4a and 4b for
both PST/PHF cases when NR = 1; A* = 0.2; B* = 0.2;
k1 = 0.1 and EcðE0cÞ ¼ 0:1. The results show marked
decrease in temperature profiles with increase in r for all
the cases. Moreover, the effect of the dissipative heat on
temperature distributions has also been depicted. Again,
line) and without (A� ¼ B� ¼ 0, broken line) internal heat generation.

(solid line) and without (broken line) work done by deformation.



Fig. 3a. Temperature profiles in PST case for two values of NR with (solid line) and without (broken line) viscous dissipation.

Fig. 3b. Temperature profiles in PHF case for two values of NR with (solid line) and without (broken line) work done by deformation.

Fig. 4a. Temperature profiles in PST case for two values of r when the dissipative heat is present (solid line) or it is absent (broken line).
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when the effects of frictional heating are considered in the
energy equation, an augment in the fluid’s temperature
occurs. These augments become more important when r
is low.
The effect of increasing A* is shown in Figs. 5a and 5b
for both PST/PHF cases when NR = 1; r = 3; B* = 0.2;
k1 = 0.1 and EcðE0cÞ ¼ 0:1. As seen, the results indicate
slight increase in temperature profiles with increase in A*



Fig. 4b. Temperature profiles in PHF case for two values of r when the dissipative heat is present (solid line) or it is absent (broken line).

Fig. 5a. Temperature profiles in PST case for two values of A* with (solid line) and without (broken line) elastic deformation’s effect.
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for all the cases. The frictional heating yields an augment in
the temperature of the fluid in the flow region and the elas-
tic deformation’s effect, too.

Figs. 6a and 6b depict the effect of varying B* for
NR = 1; r = 3; A* = 0.2; k1 = 0.1 and EcðE0cÞ ¼ 0:1. The
results indicate slight increase in temperature distributions
with increase in B* for both PST/PHF cases.

The combined effect of increasing values of r and NR is
to decrease the magnitude of h(g) largely in the boundary
layer flow region. The effect of increasing EcðE0cÞ is to
enhance the temperature h(g), whereas the effect of increas-
ing k1 is quite the opposite. The internal heat generation/
absorption enhances or damps the heat transport. Based
on numerical results treated here, the influence of the elas-
tic deformation on temperature profiles decreases when r
and NR increase whereas it increases when k1 and EcðE0cÞ
increase.

Finally, the values of the wall temperature gradient
½�h0ð0Þ� and the wall temperature g(0) as a function of all
the parameters of the thermal boundary-layer treated here,
have been tabulated in Table 1. From this Table we
observe that the effect of viscoelastic parameter k1 is to
increase the wall temperature gradient ½�h0ð0Þ� in PST case
and to decrease the wall temperature g(0) in PHF case. The
effect of increasing EcðE0cÞ is to increase the magnitude of
both h(g) and g(g), whereas the opposite behaviour is seen
for both the parameters NR and r. The effect of increasing
the strength of the heat sink is to increase the wall temper-
ature gradient ½�h0ð0Þ� and the opposite behaviour is seen
for a heat source.

4. Discussion and conclusions

In this work we analyze boundary-layer flow and heat
transfer in a viscoelastic fluid over a stretching sheet in
the presence of radiation and the Rosseland approximation
for the radiative heat flux is used. A parameter of interest
for the present study is the viscoelastic parameter k1 which



Fig. 5b. Temperature profiles in PHF case for two values of A* when the dissipative heat is present (solid line) or it is absent (broken line).

Fig. 6b. Temperature profiles in PHF case for two values of B* with (solid line) and without (broken line) elastic deformation’s effect.

Fig. 6a. Temperature profiles in PST case for two values of B* when the dissipative heat is present (solid line) or it is absent (broken line).
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is related to a1. The values of f 0 and f are related to the
velocity components u and v through Eqs. (12)–(14). From
these equations it can be studied the behaviour of u and v

with changes in k1. In view of this, the velocity components



Table 1
Wall temperature gradient ½�h0ð0Þ� (PST case) and wall temperature g(0)
(PHF case) for several values of k1, EcðE0cÞ, NR, r, A* and B*

k1 EcðE0cÞ NR r A* B* �h0ð0Þ g(0)

0.0 0.1 1 3 0.2 0.2 1.41679 0.71619
0.1 1.43867 0.71265
0.3 1.45673 0.70168

0.1 0.0 1 3 0.2 0.2 1.46377 0.68768
0.1 1.43867 0.71265
0.3 1.34648 0.77721

0.1 0.1 1 3 0.2 0.2 1.43867 0.71265
3 1.88649 0.54324
5 2.02060 0.50689

0.1 0.1 1 1.5 0.2 0.2 0.80103 1.23417
3 1.43867 0.71265
7 2.02060 0.50689

0.1 0.1 1 3 �0.2 0.2 1.51686 0.66227
0.0 1.47677 0.69764
0.2 1.43867 0.71265

0.1 0.1 1 3 0.2 �0.2 1.51037 0.67104
0.0 1.47650 0.68608
0.2 1.43867 0.71265
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above-mentioned are a decreasing function of g. We also
observe that r is an important parameter in the present
study which is related to k1 through Eq. (13).

The equations for the heat transfer analysis were solved
by the Runge–Kutta method of fourth order and the influ-
ences of the parameters EcðE0cÞ, k1, NR, r, A* and B* on
temperature profiles were examined in this analysis.

From our numerical results and for both PST/PHF
cases, the following conclusions may be drawn:

1. The increase of the parameter EcðE0cÞ leads to the
increase of dimensionless surface temperature.

2. An augment in k1 yields a diminution in the temperature
of the fluid.

3. The combined effect of increasing values of r and NR is
to decrease the temperature distribution in the flow
region with its increases.

4. The effect of the inclusion of viscous dissipation is to
increase the temperature distribution in the flow region.

5. The internal heat generation/absorption enhances or
damps the heat transport.

6. The influence of the work due to deformation on tem-
perature profiles becomes more significant when the
parameters r and NR are low.

7. The presence of the contribution of heat due to elastic
deformation in the energy equation yields an augment
in the temperature of the fluid.

References

[1] B.C. Sakiadis, Boundary-layer behaviour on continuous solid sur-
faces, Am. Inst. Chem. Eng. J. 7 (1961) 26–28.
[2] L.E. Erickson, L.T. Fan, V.G. Fox, Heat and mass transfer on a
moving continuous moving surface, Ind. Eng. Chem. Fund. 5 (1966)
19–25.

[3] F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Flow and heat transfer in
the boundary layer on a continuous moving surface, Int. J. Heat Mass
Transfer 10 (1967) 219–223.

[4] L.J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys. 21
(1970) 645–647.

[5] P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet
with suction or blowing, Can. J. Chem. Eng. 55 (1977) 744–746.

[6] V.M. Soundalgekar, Stokes problem for elastic–viscous fluid, Rheol.
Acta 13 (1974) 177–179.

[7] B. Siddappa, B.S. Khapate, Rivlin–Ericksen fluid flow past a
stretching sheet, Rev. Roum. Sci. Tech. Mech. (Appl.) 2 (1976)
497–505.

[8] K.R. Rajagopal, T.Y. Na, A.S. Gupta, Flow of a viscoelastic fluid
over a stretching sheet, Rheol. Acta 23 (1984) 213–215.

[9] B.S. Dandapat, A.S. Gupta, Flow and heat transfer in a viscoelastic
fluid over a stretching sheet, Int. J. Non-Linear Mech. 24 (1989) 215–
219.

[10] R. Cortell, Similarity solutions for flow and heat transfer of a
viscoelastic fluid over a stretching sheet, Int. J. Non-Linear Mech. 29
(1994) 155–161.

[11] K.R. Rajagopal, On boundary conditions for fluids of the differential
type, in: A. Sequeira (Ed.), Navier–Stokes Equations and Related
Non-Linear Problems, Plenum Press, New York, 1995, pp. 273–278.

[12] K.R. Rajagopal, On the creeping flow of second order fluid, J. Non-
Newtonian Fluid Mech. 15 (1984) 239–246.

[13] K.R. Rajagopal, A.S. Gupta, An exact solution for the flow of a Non-
Newtonian fluid past an infinite porous plate, Meccanica 19 (1984)
158–160.

[14] K. Vajravelu, A. Hadjinicolaou, Heat transfer in a viscous fluid over a
stretching sheet with viscous dissipation and internal heat generation,
Int. Commun. Heat Mass Transfer 20 (1993) 417–430.

[15] K. Vajravelu, A. Hadjinicolaou, Convective heat transfer in an
electrically conducting fluid at a stretching surface with uniform free
stream, Int. J. Eng. Sci. 35 (1997) 1237–1244.

[16] E.M. Abo-Eldahab, M.A. El Aziz, Blowing/suction effect on hydro-
magnetic heat transfer by mixed convection from an inclined
continuously stretching surface with internal heat generation/absorp-
tion, Int. J. Therm. Sci. 43 (2004) 709–719.

[17] M.I. Char, Heat and mass transfer in a hydromagnetic flow of the
viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl. 186
(1994) 674–689.

[18] M.S. Sarma, B.N. Rao, Heat transfer in a viscoelastic fluid over a
stretching sheet, J. Math. Anal. Appl. 222 (1998) 268–275.

[19] K. Vajravelu, T. Roper, Flow and heat transfer in a second grade fluid
over a stretching sheet, Int. J. Non-Linear Mech. 34 (1999) 1031–1036.

[20] R. Cortell, A note on flow and heat transfer of a viscoelastic fluid over
a stretching sheet, Int. J. Non-Linear Mech. 41 (2006) 78–85.

[21] R. Cortell, Flow and heat transfer of an electrically conducting fluid
of second grade over a stretching sheet subject to suction and to a
transverse magnetic field, Int. J. Heat Mass Transfer 49 (2006) 1851–
1856.

[22] A. Raptis, C. Perdikis, Viscoelastic flow by the presence of radiation,
ZAMM 78 (1998) 277–279.

[23] A. Raptis, Flow of a micropolar fluid past a continuously moving
plate by the presence of radiation, Int. J. Heat Mass Transfer 41
(1998) 2865–2866.

[24] A. Raptis, Radiation and viscoelastic flow, Int. Commun. Heat Mass
Transfer 26 (1999) 889–895.

[25] A. Raptis, C. Perdikis, H.S. Takhar, Effect of thermal radiation on
MHD flow, Appl. Math. Comput. 153 (2004) 645–649.

[26] O.D. Makinde, Free convection flow with thermal radiation and mass
transfer past a moving vertical porous plate, Int. Commun. Heat
Mass Transfer 32 (2005) 1411–1419.

[27] M.E.M. Ouaf, Exact solution of thermal radiation on MHD flow over a
stretching porous sheet, Appl. Math. Comp. 170 (2005) 1117–1125.



3162 R.C. Bataller / International Journal of Heat and Mass Transfer 50 (2007) 3152–3162
[28] P.G. Siddheshwar, U.S. Mahabaleswar, Effects of radiation and heat
source on MHD flow of a viscoelastic liquid and heat transfer over a
stretching sheet, Int. J. Non-Linear Mech. 40 (2005) 807–820.

[29] Sujit Kumar Khan, Heat transfer in a viscoelastic fluid flow over a
stretching surface with heat source/sink, suction/blowing and radia-
tion, Int. J. Heat Mass Transfer 49 (2006) 628–639.

[30] M.A. Seddeek, M.S. Abdelmeguid, Effect of radiation and thermal
diffusivity on heat transfer over a stretching surface with variable heat
flux, Phys. Lett. A 348 (2006) 172–179.
[31] P.S. Datti, K.V. Prasad, M. Subhas Abel, Ambuja Joshi, MHD
viscoelastic fluid flow over a non-isothermal stretching sheet, Int. J.
Eng. Sci. 42 (2004) 935–946.

[32] R.S. Rivlin, J.L. Ericksen, Stress deformation relations for isotropic
materials, J. Rat. Mech. Anal. 4 (1955) 323–425.

[33] J.E. Dunn, K.R. Rajagopal, Fluids of differential type, critical review
and thermodynamic analysis, Int. J. Eng. Sci. 33 (1995) 689–729.

[34] V.K. Garg, K.R. Rajagopal, Flow of non-Newtonian fluid past a
wedge, Acta Mech. 88 (1991) 113–123.


	Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation
	Introduction
	Flow analysis
	Heat transfer analyses
	Prescribed surface temperature (PST case)
	Prescribed heat flux (PHF case)

	Discussion and conclusions
	References


